No announcement yet.

Advance Helps Explain Stem Cell Behavior

  • Filter
  • Time
  • Show
Clear All
new posts

    Advance Helps Explain Stem Cell Behavior

    Biochemists at Oregon State University have developed a new method to identify the "DNA-binding transcription factors" that help steer stem cells into forming the wide variety of cells that ultimately make up all the organs and parts of a living vertebrate animal.

    The findings were made using mouse embryonic spinal cord as a model, and will be announced this week in Proceedings of the National Academy of Sciences, a professional journal.
    The research is an important step towards understanding stem cell behavior, how cellular development is controlled, and how a single cell -- which has the genetic code within it to become any cell in the body -- is told what to become, where to go, and what metabolic function to perform.
    Fundamental discoveries such as this, experts say, could ultimately lead to the ability to simulate and possibly control the early developmental process, manipulating stem cells in a way that would help address disease problems, injuries, failing organs or other medical issues.
    "If you have an electrical problem in a car, you can repair it a lot easier if you have a wiring diagram," said Michael Gross, an assistant professor of biochemistry and biophysics at OSU. "In a way that's what we're trying to do here, except we're trying to repair or create a certain kind of cell. To do that you need a blueprint of how these processes work, and this will help us create that blueprint."
    Even though the processes of cellular development are understood in a broad sense, the detailed biochemistry that underlies and controls these processes is still poorly defined. The overall process appears to be incredibly complex with many pieces and "combinatorial interactions."
    Still unknown is exactly what causes certain genes to be expressed. In other words, out of the thousands of genes that could direct the formation of a cell in many different directions, only a subset actually get turned on and become operative in each type of cell. And beyond that, the newly-formed cells then need to arrange themselves in distinct patterns to perform life functions.
    "It's clear that there is an extended sequence of steps which turn some genes on and others off, allowing a cell to become a liver cell, for instance, rather than a brain cell," said Chrissa Kioussi, an OSU assistant professor of pharmacology and co-author on the study. "We were able to use a system of microarray comparisons that monitored the expression of genes and more quickly gives us an idea of how this process is working, and how patterns of development occur."
    The studies were done in embryonic spinal cord in mice, although the same process ultimately takes place during development of any organ or bodily system, the researchers said. The research identified the subset of genes involved in producing the various types of spinal cord cells -- there may be 10s to 100s of cell types just in the spinal cord. The cell types are created very quickly in early embryonic development by a pattern formation mechanism, and then mature more slowly as the central nervous system creates the functional neural circuits.

    more in link:


    Despite the suppression of embryonic stem cell research in the United States, U.S. scientists have continued to make significant advances that will make a big difference for the research. Understanding of genetic regulation of stem cells and their differentiation will be very important for manipulating stem cells both in culture and after transplantation. As I and more and more scientists having been saying for several years, the future lies in understanding stem cell biology. It is this understanding that will make it possible for us to make any cell in the body into a stem cell. These research tools will also provide the tools for curing cancer and many other diseases.